જો $A = \left\{ {{x_1},{x_2},{x_3},.....,{x_7}} \right\}$ અને $B = \left\{ {{y_1},{y_2},{y_3}} \right\}$ મા અનુક્રમે સાત અને ત્રણ ભિન્ન સભ્યો હોય તો વિધેય $f:A \to B$ ની કુલ સંખ્યા ..... મળે કે જેથી વિધેયો વ્યાપત થાય જ્યા ત્રન સભ્યો $x$ ન એ ગણ $A$ મા એવા છે કે જેથી $f(x) = {y_2}$ થાય
$14{(^7}{C_2})$
$16{(^7}{C_3})$
$12{(^7}{C_2})$
$14{(^7}{C_3})$
જો $f(x) = \cos (\log x)$, તો $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right] =$
નીચેનામાંથી ક્યુ વિધાન સાચુ છે?
અહી $f: R \rightarrow R$ એ સતત વિધેય છે કે જેથી દરેક $x \in R$ માટે $f\left(x^2\right)=f\left(x^3\right)$ થાય. તો આપેલ વિધાન જુઓ.
$I.$ $f$ એ અયુગ્મ વિધેય છે.
$II.$ $f$ એ યુગ્મ વિધેય છે.
$III$. $f$ એ દરેક બિંદુ આગળ વિકલનીય છે તો . .. .
વિધેય $f(x) = {\sin ^{ - 1}}5x$ નો પ્રદેશ મેળવો.
જો $f\left( x \right) = {\log _e}\,\left( {\frac{{1 - x}}{{1 + x}}} \right)$, $\left| x \right| < 1$, તો $f\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$ મેળવો.